Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing
نویسندگان
چکیده
We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface.
منابع مشابه
Tunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملRainbow-trapping by adiabatic tuning of intragroove plasmon coupling.
Trapping broadband electromagnetic radiation over a subwavelength grating, provides new opportunities for hyperspectral light-matter interaction on a nanometer scale. Previous efforts have shown rainbow-trapping is possible on functionally graded structures. Here, we propose groove width as a new gradient parameter for designing rainbow-trapping gratings and define the range of its validity. We...
متن کاملCircular slit-groove plasmonic interferometers: a generalized approach to high-throughput biochemical sensing
A class of plasmonic interferometers consisting of a circular slit flanked by a concentric circular groove is demonstrated. Laying in-between the conventional bullseye and the linear slit-groove interferometers, these circular slit-groove interferometers show a polarization-insensitive optical response (thanks to the rotational symmetry imposed by the circular geometry), and overall higher ligh...
متن کاملPlasmonic interferometric sensor arrays for high-performance label-free biomolecular detection.
A plasmonic interferometric biosensor that consists of arrays of circular aperture-groove nanostructures patterned on a gold film for phase-sensitive biomolecular detection is demonstrated. The phase and amplitude of interfering surface plasmon polaritons (SPPs) in the proposed device can be effectively engineered by structural tuning, providing flexible and efficient control over the plasmon l...
متن کاملPlasmonic Nanostructures for Nano-Scale Bio-Sensing
The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realiz...
متن کامل